
Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 69

Learning from the Case Studies,

How Global Software Development Process is executed

in an Agile Method Environment

Ridi Ferdiana
1
, Lukito Edi Nugroho

2
, Paulus Insap Santoso

3
, Ahmad Ashari

4

Department of Electrical Engineering and Information Technology

Gadjah Mada University

Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia

Email: ridi@te.gadjahmada.edu
1
, lukito@te.gadjahmada.edu

2
,

insap@te.gadjahmada.edu
3
, ashari@ugm.ac.id

4

Abstrak. Belajar dari Studi Kasus, Bagaimana Proses Pengembangan Perangkat

Lunak Global Dieksekusi Pada Lingkungan Metode Agile. Tantangan terbesar

dalam Software Development Global (GSD) adalah efisiensi waktu untuk

mengembangkan. GSD menyediakan panduan untuk menggunakan proses bersama

dengan muka seperti proses metode analisis terpadu atau metode air terjun.

Meskipun, itu memberikan manfaat melalui dokumentasi yang komprehensif dan

kejelasan, ia memberikan menghambat organisasi yang ingin menggunakan GSD

tetapi dalam terburu-buru. Metode Agile mengklaim efisien dan pendekatan yang

efektif untuk pengembangan perangkat lunak. Makalah ini laporan tentang

bagaimana organisasi menggabungkan proses GSD dengan metode tangkas

seperti eXtreme Programming (XP), Scrum, Agile Unified Process (UP Agile),

Pengembangan Fitur Driven (FDD), dan Microsoft Solusi Kerangka Agile (MSF

Agile). Makalah ini menggunakan studi kasus untuk mendapatkan pengalaman

organisasi dan menjelaskan praktek yang berguna untuk organisasi yang ingin

menerapkan GSD dengan metode tangkas.

Kata Kunci: Siklus Hidup Pengembangan Perangkat Lunak, Agile, GSD

Abstract. The biggest challenge in Global Software Development (GSD) is the

efficiency of time to develop. GSD provides a guidance to use the process along

with up-front analysis method like unified process or waterfall method. Although,

it gives a benefit through comprehensive documentation and its clearness, it gives

inhibits the organization which wants use GSD but in a rush. Agile methods claim

an efficient and the effective approach to software development. This paper reports

on how organizations combine the GSD process with agile methods like eXtreme

Programming (XP), Scrum, Agile Unified Process (Agile UP), Feature Driven

Development (FDD), and Microsoft Solution Framework Agile (MSF Agile). The

paper uses case study to get organization experiences and describe useful practices

for the organization that want to implement GSD with an agile method.

Keywords: Software Development Lifecycle, Agile, GSD

1. Introduction

 Global Software Development (GSD) is terms that is interchange-ably used to describe

a software engineering process solution to overcome software engineering inhibitors in the

distributed development. GSD is a contemporary form of software development undertaken in

globally distributed locations and facilitated by advanced information and communication

technology (ICT), with the predominant aim of rationalizing the development process

(Sangwan, 2007). GSD offers a theoretical process to handle distributed software development.

70 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

As a software engineering process, GSD offers planning strategy, organization structure, and

progress control and monitoring. Rather than others approaches or terms, GSD provides more

sufficient process and workflow in the software engineering framework.

While GSD promises economic benefits through its software engineering process

model, GSD still has consequences. Mockus and Herbsleb (Mockus, 2001) define the pitfalls

like differences in infrastructure in different development locations, interdependencies among

work items, and difficulties of coordination because of the differences (culture, language, time).

Some research has addressed the GSD weakness through specific approaches like Rational

Unified Process (RUP) for GSD (Sangwan, 2007), software configuration management in GSD

(Pilatti, 2006), or a shared mental model in GSD (Bass, 2006). This research provides temporal

solution and addresses a specific part of the GSD process, since GSD is an enormous topic and

need a different approach to handle the pitfall.

Relating the Agile and GSD is somewhat contradictive. Agile needs intensive

communication both within the customer and the team, but GSD make a distribution of the team

that also contributes to the team dysfunction. Communication between peers becomes important

to the team’s collective understanding. Remote team members miss this, and consequently, their

understanding suffers. Miller (Miller, 2008) shows that when the direct communication does not

exist in their practices. It will weaken the adopted method. Taylor, et al (Taylor, 2006) shows

that the Agile adoption in GSD is just like reinventing the wheel, since many of the Agile GSD

experience reports do not provide any additional value in the existing GSD guidance. They also

recommend the researcher to create a value or a framework to integrate Agile in GSD context.

Although it contradictive in the terms of condition, several re-searchers also provide field

reports about successful agile adoption in GSD. Miller (Miller, 2008) confidently states that his

team at Microsoft delivered sufficient software by integrating Scrum, XP, and GSD. Hazzan and

Dubinsky (Hazzan, 2006) states the diversity that exists in GSD is naturally supported by agile

software development. Paasivaara et al (Paasivaara, 2009) captures the Scrum practices that

successfully adopted in three GSD projects.

 The research contribution presented in this paper is continuing the former research by

doing self-evaluation. The self-evaluation is done by presenting case studies from four sample

organizations in Asia pacific and others. The purposes of these case study are to learn how the

real implementation of an agile method in GSD process. The research has identified several

patterns and practices that happen in these case studies. The patterns and practices are described

in several categories; project planning, requirements, architecture and design, and product

development.

The pattern and practices that are described in this paper can lead to benefits for an

organization in the following areas: (1) Planning the GSD in Agile environment more precisely

especially in release and team planning. (2) Identifying what challenges in the requirements and

how to solve it. (3) Identifying the GSD best practices that happen in the real project.

2. Observed Case Studies

The research chooses five case studies samples. Each case study delivers its own unique

value regarding with others. Although the projects have unique values, they work in same

population, which is distributed development population and executing using GSD approach.

The samples come from several commercial organizations and non-profit organization with the

purpose of capturing the execution behavior of each organization. In order to create a full

picture of the agile GSD execution, the research makes an effort to captures several different

projects that have unique attributes. There are three main unique attributes in the samples that

are team scale, project type, and project licensing.

Team scale describes the team structure of the project. It can be a small (less than

dozen), medium (not more than a hundred), and large (more than a hundred). Team scale is

intended to expose the scalability of GSD in the executed project. Team scale will help the

research to obtain what values that works and does not work in the different team scale.

Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 71

Project type describes the result of the project. It gives an abstract technical complexity of the

software. This attribute will guide the research to acknowledge how effective the process in the

variety of technical complexity. This attribute also shows how an organization addressing the

different problem with same GSD process does.

Project licensing tells the project initiative and its related with the process behavior.

Commercial product means that the software can be acquired of all people by buying the

product, open source means that the software can be acquired freely, and tailor-made product is

custom software, which dedicated for the clients who order the software. Those varieties lead

the research to gain the information which is related in organization policy regarding the project

licensing and execution structure. Table 1 shows the quick preview about selected case studies

with theirs own attributes.

Table 1. Research Case Studies
Project alias Team scale Project type Project licensing

Alpha Large Operating system Commercial product

Beta Large Operating system Open source

Charlie Medium Information and automation system Commercial product

Delta Small Community information system Tailor-made product

Epsilon Small Knowledge management system Tailor-made product

Alpha project is a commercial operating system project that developed by multinational

independent software vendor organization. The organization itself has worldwide contact for

more than 50 countries and has several offices in six continents. The organization has been prior

experiences to build operation system from the scratch, and have more than 3000 developers

with equals than 3300 unique modules that developed for this project.

Beta project is the open source project that initiative from an organization that worked

for UNIX based operating system. Rather than just a kernel, Beta project is a complete

operating system. It shows sophisticated modern architectures with more than 19 million of

codes and documentation. Beta project is developed and maintained as open-source software by

a team of more than 350 individuals located throughout the world. The work foundation can be

roughly to code for system kernel, operating system utilities, porting third party program, and

building documentation.

Charlie project is commercial application that developed by six academic organization

and one commercial organization. The project is to develop a unified management station for

building automation systems such as heating ventilation and air conditioning, access control,

and lightning. This project is leaded by a commercial organization that separated in six

countries and has 76 software engineers. Charlie project is executed in multi-year and divided

its worked in United States, India, England, Germany, Brazil, and France.

Delta project is community web site application that developed by independent software

vendor organization in South East Asia. The software itself is developed for a client that

operated worldwide and has investment relation by the organization (parent and branch

organization). The client is separated at eight countries within the same continents. Delta project

vision is to build community information system that related with specific technology adoption

from the client requests. The solution is worked as a rich internet application with more than 17

modules and worked by five people that separated in a region but still in the same country.

Epsilon project is intranet web application that outsourced to an independent software

vendor organization. The client of this project is a mining and oil company. The outsource

vendor is also come from Indonesia that have specialization to build web application product.

Epsilon project is a mining monitoring system, which is displayed in their intranet portal and

their executive information system (EIS). The project itself has more than 23 modules and

worked by four people remotely and one people onsite.

72 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

3. Data Gathering Procedures

The purpose of the data gathering procedure is providing enough information to observe

the case studies through research variables. The research will collect the data by exploring the

case study related artifacts in a GSD formal workflow. GSD formal workflow describes four

main phases, which are project planning, requirements engineering, architecture designs, and

product developments (Sangwan, 2007). Each phase will be captured and discussed in scope of

research variables, this following steps in the research called as data gathering phases. Based on

the GSD formal workflow there will be four data-gathering phases, which are data gathering in

planning phase, data gathering in requirements phase, data gathering in architecture phase, and

data gathering in product phase. Figure 1 show the case studies process.

Figure 1. Case Studies Process

The collected data is stored in several variables There are two main categories in the

research which are tangible and intangible variables. Tangible variables are sets of variables that

quantitatively available such as team numbers, software line of codes, and anything that can

quantitatively described. Intangible variables are sets of variables which qualitatively variables

such as organizational wisdom, strategic planning, software complexity, etc. Tangible assets are

concrete and codified, whereas intangible ones are implicit. Both variables will become

significant inputs to discover several result attributes in the designed framework. In order to

align the research with the software engineering research, variables is categorized in three main

variables in software engineering that are people, process, and technology. Table 2 provides the

tangible and intangible variables that exist in the research.

Table 2. Research Variables

Factor Variable Category

People Team members Tangible

Team members experience Tangible

Same project experience Tangible

Same team experience Tangible

Organization structure Tangible

Product Product platform Tangible

Product type Tangible

Product complexity Tangible

Product size Tangible

 act Case Studies Process

Case studies

identified

Case studies analysis

Project

Planning

Requirements

Engineering

Architecture

Design

Product

Dev elopment

Case studies results

Values/Principles

Practices

Artifacts

Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 73

Product Artifacts Tangible

Integration with the existing product Tangible

Process Adopted process Intangible

Communication pattern Intangible

Adopted Tools Tangible

Development Practices Intangible

Adopted methods Intangible

Research variables are gathered from several constituents that can be categorized as

follows. (1) Set of information that already published in whitepapers, communication log, and

live artifacts that exist in the web or offline session. (2) Product result and case studies that

displayed as a best practices in application lifecycle management document. (3) Supporting

surveys that works as secondary survey that can support the research need. (4) Several case

studies also provide the researcher a non-disclosure agreement (NDA). Therefore, several

authors, live artifacts, and whitepapers publication is not cited because the request of the NDA.

In the modest form, the data gathering procedures are done through several steps that

are (1) Identifying available case studies artifacts or output. (2) Identifying the research

variables. (3) Categorizing the research variables in several categories. The categorization

purposes are to make the variables is easy to understand and measure. (4) Identifying the phases

in the GSD process. (5) Obtaining the research variables from the phases. (6) Analyzing the

variables into the valuable information. (7) Extracting the information into general pattern and

practices.

4. Case Studies Analysis

This section is divided into five sub main sections according to the GSD process which

are software method analysis, project planning analysis, requirement engineering analysis,

architecture design analysis, and product development analysis.

4.1. Software Method Analysis

Project Alpha adopts a framework called Microsoft Solution Framework Agile (MSF

Agile). MSF Agile provides guidance, values, and discipline to provide technical how-to to

develop the system. MSF Agile expands the generic process into several project phases that are

envisioning, planning, development, stabilization and deployment. Envisioning covers the

information gatherings, requirements development, and capturing business process. Planning

phase focuses in creating project planning and project schedule. Development phases focuses in

constructing the high-level architecture and develop the implementation based on proposed

architecture. Stabilization phase covers the testing model that done by the internal team and the

customer. The end of the project is by deploying the system and enters the result to the

maintenance model.

Project Beta adopts a feature driven development (FDD) methods. FDD is an agile

method and is a Lean method that incorporates many aspects of Lean thinking (Anderson,

2003). FDD assumes five phases that are shape-modeling, feature list, plan by subject area,

design by feature set, and build work package. Shape modeling promotes the design through a

diagram to represent requirements engineering and architectural modeling. Feature list improves

the existing result from shape modeling into streamlined package based on the feature list. The

features lists assigned in a subject area plan and feature plan. The features list is detailed in

design models. This step involves detailed, in-depth UML modeling, including enhancement of

the Class Diagram and development of a UML Sequence Diagram for each Feature in the

activity. Product development is started in the last phase by developing the code and unit tests

for the code.

74 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

Project Charlie adopts Agile Unified Process. Agile Unified Process is simplified

development methodology for RUP in an agile context (Ambler, 2008). The main difference

between Agile UP and existing RUP is the limitation of up-front analysis and design modeling.

Agile UP is captured into four phases that are inception, elaboration, constructions, and

transition. Inception is a phase where the requirement and planning is happen. Elaboration is a

phase where the team creates the architecture model. A construction is a phase where the

architecture is coded into software. The transition process is a process where the software is

tested and deployed into client.

Project Delta adopts Scrum software method. Scrum is a software methodology that is

focused in project management and agile software development (Bates, 2008). Scrum divides

the project execution into four phases that are product backlog, sprint backlog, sprint, and

deliverable increment software. Product backlog is a requirements engineering process in

project Delta. Sprint backlog is a planning model that exists in Scrum. The sprint backlog result

is a plan that executed in coding and testing activities in a Sprint phase. The result of the Sprint

phase is software that is deployed incrementally.

The Epsilon project adopts Ad-hoc methods that categorized as an eXtreme

Programming (XP). XP in Epsilon project is adopted seamlessly in four main phases that are

exploration, planning, iteration, production and maintenance.

4.2. Project Planning Analysis

Project planning is started by defining team structures for the project. Team structures

are come up from many different situations. There are several backgrounds why the team is

structured in several circumstances. For example, Charlie and Epsilon projects are outsourcing

project that are developed by different organization, therefore there is a consensus before the

project is executed. The consensus itself is suitable when agreed in budget and time

circumstances. In the large projects like Alpha and Beta, the team structuring is happen before

the software process executed. Large product development plan and prior experiences is the two

main reasons why the team structure is structured before the software process phases. Another

example is come from Delta projects, since delta project is software solution that developed for

internal need of an organization, therefore the team structuring exist “just in time” when the

software need to be developed. Delta projects do not need a specific consensus since the project

itself is created for them.

Based on case studies team structures are developed under three circumstances that are.

(1) Projects already agreed in the term of budget and time. This circumstance happens for small

and medium project scales. In our case studies, this happens in Charlie and Epsilon projects.

The research describes this circumstance as planning phase team structuring. (2) Projects are in

initiation and market intense gatherings. This circumstance happens for large project scales that

need more time and more fixed plan. In case studies, this happens in Alpha and Beta projects.

The research describes this circumstance as pre-requirements team structuring. (3) Projects

modules are already analyzed and designed. This circumstance happens for internal small

project scales like Delta projects. The research describes this circumstance as development team

structuring.

As mentioned, GSD team composition is varied from each case study. The research

identified that team composition is influenced by some characteristics such as. (1) Team

characteristics such as size, geographic dispersion and members shared work experience. (2)

Organization characteristics like past experiences with other forms of virtual arrangements,

organizational inertia, politics, and culture. (3) Tasks characteristics like its difficulty,

ambiguity, and priority.

The research assumes that the geographical distribution is a major reason the

differentiation between team models. The case studies show that the team model is equal with

the Sangwan, et al research (2006). Sangwan, et al categorized the team model in three models

as follows. (1) Remote model (hub-to-spoke model), this model is introduced in Epsilon project

Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 75

and it is identified by geographically separation of client and development team. Since the team

still in same place, there is no problem in technical communication, however the main

interaction problem is happen between team and client. (2) Virtual model (hub-to-hub model),

this model is introduced in Delta project. This model adjusted a separation between client and

distributed team. The main idea of virtual model is the team works as a big team although there

are separated in distant. The team is still in one management and work in same stream with the

others member that separated in distant. (3) Mesh model (fully distributed), this model is

introduced in Alpha, Beta, and Charlie projects. As is stated by its name, this model is the most

distributed than the others model. Team and client are separated by distant, and team is

distributed in different management that exists in the every team site.

4.3. Requirement Analysis

When looking in requirements gathering, the research did not find any different

approaches that happen in requirements gathering. However, as with others aspects of software

development, the requirement engineering related issues that GSD projects experience can also

found in the collocated software development. However, some of the issues are different in

GSD for example the difficulties in change management, quality assurance control, and impact

on related process. Change management is an area that can be most difficult under the best

circumstances. The problematic problem is the ripple effect of a requirement changes including

impact analysis, updating the associated artifacts, re-planning of system. Quality assurance

activities are also quite significant for GSD projects. It is important to get precise feedback or

progress of the various teams. One of the things can be problematic for many projects are to

have test plan that have adequate coverage and executed parallel. Impact on related process

occurs when the requirement changes, the GSD difficulties is to maintain a clear traceability, to

update all the sites about the changes, and to create a log about the changes. All of the

difficulties can be addressed through requirements artifacts that should have sufficient details to

provide dependencies between requirements, to re-adjust as needed when the changes happen,

and to provide backlog mechanism when the changes happen.

Alpha project develops their own technique in requirement engineering through several

artifacts such as user profiles document to identify the users, vision scope document to identify

the functional and non-functional requirements, and several usage scenarios to identify the

business process detail. Since the Alpha project is developed as commercial operating system

(OS), the requirements are gathered from the feedback legacy operating system, anonymous

report usage, and technology adoption request. The gathering process is done by selecting the

feature into three categories which are critical feature (like performance issues), business feature

(like integration and compatibility issues), and nice to have feature (like 3D animation). Those

features is identified and documented in artifacts. The requirements itself are quite stable

because is driven by product and market initiative not directly by the client. The issue in this

project is managing the requirements artifacts by keeping it up to date between sites. It solved

by providing the team a collaboration workspace.

Beta project has similarity with Alpha project that also develop operating system. The

differentiation between of them is their execution model. Beta project is executed as open

source software (OSS) development; therefore, the development firm is driven by communities

and users. The requirements is written and published in online wiki. In order to modify wiki

(such as adding the information, request feature, etc.), the member should get approval from

release engineering team. Release engineering teamwork as central team in beta project and they

should make a sustainable plan for the OS, approving proposal for new developer, and resolving

changes. The requirements itself quite stable because its nature as a software product. It is

developed through forum-based requirement gathering process. After forum agreement, the

community creates several wiki sites to discuss specific feature or application. A member who

has an idea can contribute through the idea and update the wiki but not for the features that

already freezes. Some of the member uses a diagram to make communication more effective.

76 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

Charlie project maintains its requirements through the requirements engineer that exist

in central and remote team. Requirements engineer in central team creates high-level functional

requirements, use-case specification, user interface specification, team verifies and validates

requirement and maintain traceability between all these artifacts. Requirements engineer in site

team facilitates team’s understanding of all requirements, and ensure that all requirements

specification work assigned to the team is being delivered per schedule. The wiki is the primary

medium for specifying requirements specifications. It stores all the artifacts that tie together, i.e.

use case specifications and sequence diagram is drawn by the Borland Together™, and it is

linked with user interface (UI) document that is created by Microsoft Visio™. The artifacts is

composed as Rational Unified process template and uploaded to the Wiki to provide easy

traceability.

Delta projects started their requirements gathering by seeing the equal system, which

exists in others region that already have community information system (North America

region). The list of features is extracted by the architects and composed in a document. The

document is sent through mail system to the project manager. The project manager discuss the

document with others stakeholder that separated geographically by using email distribution list.

Once the feature list is approved by the stakeholder, the architect start to build technical

requirements and send it to the team members including project manager.

Epsilon project is another interesting project that used a conventional collocated model.

Although the development is done by the remote team, the requirement engineering is done by

the people (in this case project manager) who travelled to the client. The requirement process is

done through ASR (Architecturally Significant Requirements) workshops that held every week

during envisioning phases. The result of ASR workshops is a flowchart that describes how the

system will work, and what to need to make it work. The remote team use the ASR result to

build the proof of concept (POC).

All of these projects lead several inferences about requirements gathering in GSD that

are. (1) The artifacts are the key of requirement engineering in the GSD projects. (2) The

requirement artifacts are developed based on adopted software method. (3) The artifacts are

stored and sent through tools or electronic communication such as email, wiki, web forum, and

collaboration workspaces.

4.4. Architecture and Design Analysis

 Architecture design in GSD and collocate projects is almost the same. The difference

between of them majorly focus in how the team communicate the architecture through indirect

media, split the work to separated team, and integrate the work when it’s ready. Software

product is defined its quality through better architecture, and architecture itself is defined by the

organization structure behind of it. Since the tasks related with the architecture, components are

tightly coupled and require more communication. The team needs to eliminate the coordination

and social issue in global software development. Case studies in this research provide some

alternatives how the team tackles those issues.

Alpha project defines the architecture by joining all the architects in online conferences.

They use collaboration software to accelerate the communication between separated team.

Video conferences, presentation sharing, and instant messaging are three keys to communicate

the idea and solve the cultural issues through English conversations. Head architect headed a

presentation that consist of structure template, team composition, and work unit for each

architect. Through presentation sharing, an architect from central team described the overall

solution in separated daily session. The architecture that described by central team architect is

common sense high-level architecture; the detail about the architecture itself is done by the

separated site team who handle it. Every architect has at least knowledge the overall architecture

through published book and journal, internal documentation, and prior system architecture.

 Beta project started the architecture development through communication between

peers in IRC, Forums, and Wiki. The core architecture on beta project usually related with the

Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 77

core operating system function such as managing and knowing the hardware resources. The

initiator uploads the architecture artifacts through wiki and subversions. Diagram is the main

component that displayed in the artifact. Diagram can be displayed as ASCII, picture, or

common free case tools to create a diagram like DIA or Launchpad. The artifact mostly

provides high-level structure of the system where the detail one usually is reversed engineering

from the code. The artifact will be discussed and refined by the others member through

comment system and the initiator or volunteer will update the artifact when it necessary. Since

the project is available to the public, versioning control is necessary to control the changes that

happen in architecture.

Charlie project started the architecture development by dividing the architecture in two

main views that are module view and components-connectors view. Module views provide

high-level software modules and their dependencies. Components-connectors view shows the

dynamic interaction between the modules. The structure of the modules can be further refined to

yield sub-modules and their dependencies. These modules and sub-modules can then be

assigned to the individual teams for development when enough detail is worked out so each

team understands what modules it relies on for its piece of the project and what other teams rely

on its work. In order to provide the detail view, the component-connector will help the

development team to simulate the modules behavior at the runtime process. Central team

initiated overall architecture development, site team will add the additional modules when it

necessary. The hub-to-spoke model is adopted in this project.

Delta project is started the architecture development indirectly through rapid

development approaches. Development team creates the architecture when they built the proof

of concept (POC). POC is a prototype based modeling that focus in several essential feature of

the system. Development team creates staging servers in order to communicate the architecture,

for further view in architecture communication, the architect in development team sent the

architecture presentation through email.

Epsilon project is started the requirements through direct communication between

development team and project manager. Project manager who is already get in touch with

stakeholder communicate the result to the development team. The development team creates the

high-level architecture in one-day workshop. For a week, the detail of the architecture is

exposed to the client. It contains high-level architecture, technology recommendation, and some

screenshot of system mock that should be approved by the client.

Architecture development in our case studies provides us broad view how the design is

created in different organization. Several organization projects like Alpha and Charlie has a

formal and forward structure to create the architecture. Beta project has unique architectures

development through diagramming and initiated by the community. Delta and Epsilon create

architectures through agile modeling, some of them also using reverse engineering technique to

create the architecture.

Every project has unique approaches to overcome the architecture design. Based on this

section, the research concludes some generic patterns as follows. (1) Synchronous or direct

communication is needed in architecture design discussions. Therefore, CSCW tools like instant

messaging, presentation sharing, or video conferences often needed to increase the limitation of

direct interaction. (2) Diagram is the most valuable in term of asynchronous architecture

artifacts. When the team could not meet each other’s (e.g. because time differences), the

diagram will help the team communicate their idea. (3) Prototyping like POC will give better

feasibility to communicate the overall architecture when the cultural and language become

obstacles for the team to communicate effectively.

4.5. Product Development Analysis

Products development in GSD is a topic that really depend on the product that being

developed. The development model is depended on the product, organization experiences,

method adoption, technology adoption, and organizational policy. Others than the product,

78 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

product development also depend on the software methodology that adopted by the

organization.

Alpha project chooses MSF Agile as a framework that can support agile software

developments. The codes are developed with short lifecycles and delivery-oriented teams based

on architecture development. In order to integrate the result between the separated team, teams

are supported by the configuration management tools called Team Foundation Server (TFS).

TFS is provides configuration management of both code and documentation artifacts. It

provides testing automation services, quality control workflow and serves as a central repository

and collaboration portal for a software development team. The development task in Alpha

project is driven architecture and time to market when each module is finished. TFS will store

the module and integration team will integrate the module by referencing with the architecture.

Beta project run their project in individual module development. Individual module

development is worked by a team that has separated members. Each member will do code

development either in small regional team or single person code development. Beta project

development is also known as “Round Clock Development”. Round clock development is

started by creating a workspace in a source-code versioning site like Sourceforge.com or

Codeplex.com. The architecture plan is uploaded and the assignment is assigned to the team

member. The codes are developed by an individual and then committed through collaboration

site with FDD method. Committed code can be worked by different team member. Round clock

development utilizes the 24-work shift for a member that has different time zone.

Charlie project started the development process through identification work unit’s

dependencies. Before the development, significant amount of communication and negotiation

has to occur between the developers and the users of the software modules to arrive at a good

understanding of the final product. It is become best practices to co-locate development of

software units highly dependent on each other with relatively unstable descriptions. If co-locate

is not supported, the central team chose the nearest teams to work for the software units and rely

on asynchronous communication. Charlie projects using standardized the tools and the Agile UP

artifact format for every site team.

Product developments in Delta project is solved by one central development site.

Therefore the experience between collocate product development is existed in Delta project.

Development team in Delta project is using Scrum agile development (Schwaber, 2004). The

heart of Scrum lies in the iteration. The team looks at the requirements, considers the available

technology, creates the product backlog, and evaluates its own skills and capabilities. When the

initial features are approved by all stakeholders, the team is doing iteration for the features. The

issue happens when the client request features changes in the middle of sprint. That kind issue is

agreed by the development team and the stakeholder through a consensus. The consensus

explicitly states that the feature changes will be discussed through Scrum meeting after or

before iteration not in the middle iteration.

Epsilon project starts the product development through improvement of a mock object

that is developed in architecture design. The mock object itself contain a layout of the system,

design screenshot, and user interface interaction, Project manager visit the development team

with a client feedback. By seeing the client feedback, development team creates a development

planning through a planning game session. Planning game is a part of an agile eXtreme

Programming (XP) method (Beck, 1999). Planning game provides release and iteration planning

for the development. Modules is identified and structured as user stories, which will be

developed in a pair programming technique.

Every project has its own specific technique to do product development. Product

development itself is not stated explicitly in GSD process. GSD only provides the workflow and

generic process to do distributed software development. The rest of the development is done by

adopting specific methodology or framework like MSF Agile, FDD, Agile UP, Scrum, and XP.

Some of the patterns are described as follows. (1) Unit decomposition is the main awareness to

implement distributed development in order to limit the dependencies. (2) The development unit

is worked in small iteration in order to make the progress is tracked and synchronized. (3)

Ferdiana, Learning from the Case Studies, How Global Software Development Process is executed in an Agile Method Environment 79

Source code versioning and configuration management is deployed to track the progress of the

codes in real time.

5. Understanding Success In Agile GSD

Some classics definitions about software success level that is successful, challenged,

and impaired (Shore, 2008). Successful is delivery on time, on budget, with all features and

functions. Challenged is delivery but over budget, over the time estimate, with fewer features

and functions. Impaired is canceled at some point during development lifecycle. Successful has

further definition in software project. It is defined as intersection between personal success,

technical success, and organizational success.

The research shows that the GSD success related directly with organizational success.

GSD or not GSD is a justification that usually comes from organization, therefore when the

GSD is adopted; organization has some interest with the benefits. Therefore when adopting the

GSD especially in agile method, the patterns and practices are readdressed for the organization

wisdom to do several things which are. (1) Creating team model and composition. (2) Creating

standard artifacts and knowledge based system. (3) Preparing communication standards and

tools. (4) Proposing coding standard and modularization rules. (5) Tracking the progress

through several tools and engagement process.

Based on those facts the successful of the software development in GSD is

organizational success. Organization should understand the benefits being agile, working in

distributed environment, and collaborating with different culture. Several assumed benefits that

exposed implicit in these case studies are. (1) Bargain development costs. Alpha, Delta and

Epsilon enjoy this benefit by moving parts of the development work to low wage countries, the

same work can be done for a fraction of the cost. (2) Leveraging time different for additional

work-shift. Alpha and Beta project utilizes the time zone to make 24 hours of work shift that can

decrease cycle time. (3) Cross-Site modularization of development work based on their

technical specialty. Alpha, Beta, and Charlie enjoy this benefit by developing modules in

parallel which can reduces cycle time. (4) Admission to large skill labor pool. Five case studies

show that GSD has potential to facilitate access to large pool of highly skilled workers. (5)

Invention and shared best practices. Beta and Charlie projects lead to increased innovation and

shared best practices amongst team member. (6) Closer proximity to market and customer.

Alpha, Beta, Delta and Epsilon projects gain a more direct interaction with the customers

become possible. Close culture and neighboring position will have better knowledge of local

business conditions.

6. Discussion and Further Improvement

One of the goals of this research is discovering “real picture” of GSD project execution

in agile environment. Case studies offer some of execution practices, recommended team

structures, and the success criteria of the GSD project. Those result work as raw material to

enhance the agile process into distributed software development. Case studies show several key

patterns that already described before. (1) GSD process in agile environment is used by

adjoining the existing method that is chosen by the organization wisdom. (2) The team

structure is based on the organizational wisdom in three different phase, which are planning

phase, pre-requirements, and development phase. (3) The requirements in agile GSD are

treated as casual requirements that needed to handle changes and collaboration through artifacts

and better communication tools. (4) The agile architecture and design phase improves the GSD

performance through diagramming, prototyping, and synchronous communication. (5) The

codes development in agile GSD show that decomposition, small iteration, and source code

become patterns in code and production phase.

Those patterns provide valuables information for organizations who want implement

GSD in agile environment. Furthermore, the paper results can become a substance for the

80 Jurnal Buana Informatika, Volume 1, Nomor 2, Juli 2010: 69-80

researcher to create a formalized GSD framework in agile method.

Acknowledgment

The authors wish to thank Microsoft Innovation Center UGM, Gadjah Mada University

Yogyakarta Indonesia, and all the local reviewer of this paper.

References

Ambler, S. W. 2008. Agile Software Development at Scale. In Balancing Agility and Formalism

in Software Engineering: Second IFIP TC 2 Central and East European Conference on

Software Engineering Techniques, CEE-SET 2007, Poznan, Poland, October 10-12,

2007, Revised Selected Papers, B. Meyer, J. R. Nawrocki, and B. Walter, Eds. Lecture

Notes In Computer Science, vol. 5082. Springer-Verlag, Berlin, Heidelberg, 1-12.

Anderson, J.D. and Schragenheim E., 2003. Agile Management for Software Engineering:

Applying the Theory of Constraints for Business Results. Prentice Hall.

Bass, M. 2006. Monitoring GSD projects via shared mental models: a suggested approach. In

Proceedings of the 2006 international Workshop on Global Software Development for

the Practitioner (Shanghai, China, May 23 - 23, 2006). GSD '06. ACM, New York, NY,

34-37.

Bates, C. D. and Yates, S. 2008. Scrum down: a software engineer and a sociologist explore the

implementation of an agile method. In Proceedings of the 2008 international Workshop

on Cooperative and Human Aspects of Software Engineering (Leipzig, Germany, May

13 - 13, 2008). CHASE '08. ACM, New York, NY, 13-16.

Beck, K. 1999. Extreme Programming Explained. Addison-Wesley.

Hazzan, O. and Dubinsky, Y. 2006. Can diversity in global software development be enhanced

by agile software development? In Proceedings of the 2006 international Workshop on

Global Software Development for the Practitioner (Shanghai, China, May 23 - 23,

2006). GSD '06. ACM, New York, NY, 58-61.

Miller, A. 2008. Distributed Agile Development at Microsoft Patterns and Practices. Microsoft.

Mockus, A. and Herbsleb, J. 2001. Challenges of Global Software Development. In Proceedings

of the 7th international Symposium on Software Metrics (April 04 - 06, 2001).

METRICS. IEEE Computer Society, Washington, DC, 182.

Paasivaara, M., Durasiewicz, S., and Lassenius, C. 2009. Using Scrum in Distributed Agile

Development: A Multiple Case Study. In Proceedings of the 2009 Fourth IEEE

international Conference on Global Software Engineering (July 13 - 16, 2009). ICGSE.

IEEE Computer Society, Washington, DC, 195-204.

Pilatti, L., Audy, J. L., and Prikladnicki, R. 2006. Software Configuration Management Over A

Global Software Development Environment: Lessons Learned From A Case Study. In

Proceedings of the 2006 international Workshop on Global Software Development for

the Practitioner (Shanghai, China, May 23 - 23, 2006). GSD '06. ACM, New York, NY,

45-50.

Sangwan, R., Bass, M., Mullick, N., Paulish, D. J., and Kazmeier, J. 2007. Global Software

Development Handbook (Auerbach Series on Applied Software Engineering Series).

Auerbach Publications.

Schwaber, K. 2004. Agile Project Management with Scrum. Microsoft Press.

Shore, J., and Warden, S. 2008. The Art of Agile Development. O'Reilly Media, Inc.

Taylor, P. S., Greer, D., Sage, P., Coleman, G., McDaid, K., and Keenan, F. 2006. Do Agile

GSD Experience Reports Help The Practitioner? In Proceedings of the 2006

international Workshop on Global Software Development for the Practitioner

(Shanghai, China, May 23 - 23, 2006). GSD '06.

